
Cisco > Inside Cisco IOS Software Architecture > 1. Fundamental IOS Software Architecture > Packet Buffer
Management

See All Titles

Packet Buffer Management

In packet routing, as in any store-and-forward operation, there must be some place within the system to
store the data while it is being routed on its way. The typical strategy is to create memory buffers to hold
incoming packets while the switching operation is taking place. Because the capability to route packets is
central to the IOS architecture, IOS contains a special component dedicated to managing just such buffers.
This component is called the buffer pool manager (not to be confused with the memory pool manager
discussed earlier). IOS uses this component to create and manage a consistent series of packet buffer
pools for switching on every platform. The buffers in these pools are collectively known as the system
buffers.

The buffer pool manager provides a convenient way to manage a set (or pool) of buffers of a particular size.
Although it can be used to manage any type of buffer pool, the buffer pool manager is used primarily to
manage pools of packet buffers, so that's what we'll focus on here.

Packet buffer pools are created using memory allocated from one of the available memory pools: for
example, Processor, I/O, and so on. To create a pool, the packet buffer manager requests a block of
memory from the kernel's memory pool manager and divides it into buffers. The packet buffer manager then
builds a list of all the free buffers and tracks the allocation and freeing of those buffers.

Packet buffer pools can be either static or dynamic. Static pools are created with a fixed number of buffers—
no additional buffers can be added to the pool. Dynamic pools are created with a particular base minimum
number of buffers, called permanent buffers, but additional buffers can be added or removed on demand.
With dynamic buffer pools, if the buffer pool manager receives a request while the pool is empty, it attempts
to expand the pool and satisfy the request immediately. If it's not possible to expand the pool within the
context of the request, it fails the request and expands the pool later in the pool manager background
process.

Packet buffer pools are classified as either public or private. Public pools, as the name implies, are available
for use by any system process, and private pools are created for (and known only to) a specific subset of
processes that use them.

System Buffers

Every IOS system has a predefined set of public buffer pools known as the system buffers. These buffer
pools are used for process switching packets through the platform and for creating packets that originate in
the platform (such as interface keepalive packets and routing updates). IOS provides statistics about these
and other buffer pools through the show buffer command. For an example, let's examine the show buffer
output in Example 1-10.

Example 1-10. show buffer Command Output

router#>show buffer Buffer elements: 500 in free list (500 max allowed) 747314 hits, 0 misses, 0 created
Public buffer pools: Small buffers, 104 bytes (total 50, permanent 50): 46 in free list (20 min, 150 max
allowed) 530303 hits, 6 misses, 18 trims, 18 created 0 failures (0 no memory) Middle buffers, 600 bytes
(total 25, permanent 25): 25 in free list (10 min, 150 max allowed) 132918 hits, 3 misses, 9 trims, 9 created
0 failures (0 no memory) Big buffers, 1524 bytes (total 50, permanent 50): 50 in free list (5 min, 150 max
allowed) 47 hits, 0 misses, 0 trims, 0 created 0 failures (0 no memory) VeryBig buffers, 4520 bytes (total 10,
permanent 10): 10 in free list (0 min, 100 max allowed) 26499 hits, 0 misses, 0 trims, 0 created 0 failures (0
no memory) Large buffers, 5024 bytes (total 0, permanent 0): 0 in free list (0 min, 10 max allowed) 0 hits, 0
misses, 0 trims, 0 created 0 failures (0 no memory) Huge buffers, 18024 bytes (total 0, permanent 0): 0 in
free list (0 min, 4 max allowed) 0 hits, 0 misses, 0 trims, 0 created 0 failures (0 no memory) …

Notice the list of Public buffer pools. These are the standard system buffers for IOS. Each one has a
name, such as Small buffers, Middle buffers, and so on, that identifies the particular pool. Following the
pool name is the byte size of the buffers contained in that pool. Each buffer pool contains buffers of one and

< BACK Make Note | Bookmark CONTINUE >

Page 1 of 8

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=18

only one size. The sizes vary from 104 bytes up to 18,024 bytes in order to accommodate the various
maximum transmission unit (MTU) sizes encountered on different interface media.

The remainder of the fields in Example 1-10 are as follows:

total—

The total number of buffers in the pool (both allocated and free).

permanent—

The base number of buffers in the pool. For dynamic pools, the total number of buffers can fluctuate
as the pool grows and shrinks. However, there will never be less than the permanent number of
buffers in the pool.

in free list—

Indicates the number of free buffers available.

min—

The minimum number of buffers desired in the free list. If the number of free buffers drops below min,
the buffer pool manager attempts to grow the pool and add more buffers until the number of free
buffers is greater than min.

max allowed—

The maximum number of buffers desired in the free list. If the number of free buffers increases
beyond max allowed, the buffer pool manager attempts to shrink the pool, deleting free buffers, until
the number of free buffers drops below max allowed. Note that the buffer pool manager never
shrinks the size of the pool below the permanent metric regardless of the value of max allowed.

hits—

The number of buffers that have been requested from the pool.

misses—

The number of times a buffer was requested from the pool when there were fewer than min buffers in
the free list.

trims—

The number of buffers that have been deleted from the pool during pool shrinkage.

created—

The number of buffers that have been created and added to the pool during pool growth.

failures—

The number of times a buffer was requested from the pool but the request could not be satisfied.
Failures can occur for two reasons:

A buffer request occurs during an interrupt and there are no free buffers. Pools can't grow
during an interrupt.

Page 2 of 8

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=18

A buffer request occurs, there are no free buffers, and there is no more memory left in the
memory pool to grow the buffer pool.

no memory—

The number of times a failure occurred because there was no available memory in the memory pool.
Note that this counter is no longer used in recent versions of IOS.

To get an understanding of just how the buffer pool manager operates with these system buffers, let's step
through a packet-switching scenario and monitor how the show buffers counters change for a particular
pool. Consider the following example.

Let's start with 16 buffers in the free list, as shown in the following output and illustrated in Figure 1-7.

Figure 1-7. Beginning with an Empty Buffer

Small buffers, 104 bytes (total 16, permanent 16):
 16 in free list (8 min, 16 max allowed)
 0 hits, 0 misses, 0 trims, 0 created
 0 failures (0 no memory)

Now say IOS receives eight packets that fit nicely into the 104-byte small buffers. The packet receive
software requests and receives eight buffers from the small buffer pool and copies in the packets. The free
list now drops from 16 to 8, resulting in a count of eight free buffers and eight hits, as illustrated in the
following output and in Figure 1-8.

Figure 1-8. Eight Packets Received

Page 3 of 8

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=18

Small buffers, 104 bytes (total 16, permanent 16):
 8 in free list (8 min, 16 max allowed)
 8 hits, 0 misses, 0 trims, 0 created
 0 failures (0 no memory)

Now IOS receives four more packets before processing any of the eight previously received. The packet
receive software requests four more buffers from the small pool and copies in the data packets. Figure 1-9
illustrates the pool at this point.

Figure 1-9. Four More Packets Received

Looking at the output of show buffers, we see several counters have incremented. Let's inspect them to
see what happened to the pool:

Small buffers, 104 bytes (total 16, permanent 16):
 4 in free list (8 min, 16 max allowed)
 12 hits, 4 misses, 0 trims, 0 created
 0 failures (0 no memory)

Page 4 of 8

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=18

The number in the free list has now dropped to 4 and there are now 12 hits, reflecting the 4 new buffers
requested. Why have the misses incremented to four, though? Because each time a buffer is requested
from a pool where it causes the free list to drop below the minimum free buffers allowed, a miss is counted.
We can see from the output that the minimum free is eight and we now have only four buffers in the free list;
so, IOS counted four misses.

Because there are now fewer than min buffers in the free list, the buffer pool manager runs the pool
manager process to grow the pool and to create more free buffers, as demonstrated in the following output
and illustrated in Figure 1-10.

Figure 1-10. After Pool Manager Creates New Buffers

Small buffers, 104 bytes (total 20, permanent 16):
 8 in free list (8 min, 16 max allowed)
 12 hits, 4 misses, 0 trims, 4 created
 0 failures (0 no memory)

We now see that the pool manager process has created four new buffers to bring the number in the free list
back up to a total of eight, the minimum number of buffers desired to be free at any time in this pool.

Now, Figure 1-11 illustrates what happens when IOS tries to request nine more packet buffers from this
pool before returning any free buffers.

Figure 1-11. Storing Nine More Packets

Page 5 of 8

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=18

From the following output, we see that the free list has been completely exhausted—0 buffers remaining—
and there have been 20 hits, 13 misses, and 1 failure. The failure accounts for the one request that overran
the buffer pool.

Small buffers, 104 bytes (total 20, permanent 16):
 0 in free list (8 min, 16 max allowed)
 20 hits, 13 misses, 0 trims, 4 created
 1 failures (0 no memory)

Finally, IOS begins processing packets and returning buffers to the pool. IOS processes 17 of the 20
packets and returns the 17 free buffers, as illustrated in Figure 1-12 and the output that follows.

Figure 1-12. Returning 17 Buffers to the Pool

Small buffers, 104 bytes (total 20, permanent 16):
 17 in free list (8 min, 16 max allowed)
 20 hits, 13 misses, 0 trims, 4 created
 1 failures (0 no memory)

Page 6 of 8

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=18

The small pool now has 17 in the free list. However, the desired maximum free buffers is only 16. Because
the number in the free list exceeds the max allowed, the next time the pool manager process runs it
shrinks the buffer pool to adjust the number of free buffers, causing one to be trimmed, as shown in Figure
1-13 and the output that follows.

Figure 1-13. Trimming the Extra Buffer

Small buffers, 104 bytes (total 20, permanent 16):
 17 in free list (8 min, 16 max allowed)
 20 hits, 13 misses, 1 trims, 4 created
 1 failures (0 no memory)

Finally, IOS processes all the remaining packets and returns the buffers to the pool. Eventually, the pool
manager process trims all the remaining buffers above the permanent pool size, resulting in the following
counts:

Small buffers, 104 bytes (total 16, permanent 16):
 16 in free list (8 min, 16 max allowed)
 20 hits, 13 misses, 4 trims, 4 created
 1 failures (0 no memory)

Last updated on 12/5/2001
Inside Cisco IOS Software Architecture, © 2002 Cisco Press

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

architecture (IOS)
 packet buffer management
 buffer pool manager

Page 7 of 8

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=18

 system buffers 2nd
buffer pool manager 2nd 3rd
buffering packets
 buffer pool manager
 system buffers 2nd
Cisco IOS
 packet buffer management
 buffer pool manager
 system buffers 2nd
commands
 show buffer 2nd
 show buffers 2nd 3rd 4th
counters
 show buffer command
dynamic packet buffer pools
IOS
 packet buffer management
 buffer pool manager
 system buffers 2nd
managers
 buffer pool manager 2nd 3rd
Middle buffers
output
 show buffer command 2nd
 show buffers command 2nd 3rd 4th
packet buffer management
 system buffers 2nd
packet buffer pools 2nd
 system buffers 2nd
packets
 buffering
 buffer pool manager
permanent buffers
 packet buffer pools
Public buffer pools
show buffer command 2nd
show buffers command 2nd 3rd 4th
Small buffers
static packet buffer pools
system buffers 2nd 3rd

About Us | Advertise On InformIT | Contact Us | Legal Notice | Privacy Policy
© 2001 Pearson Education, Inc. InformIT Division. All rights reserved. 201 West 103rd Street, Indianapolis, IN 46290

Page 8 of 8

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=18

